Whispering Gallery Mode Resonators for Frequency Metrology Applications

Lukas Baumgartel, Nan Yu Quantum Sciences and Technology Group, JPL

(c) 2012 California
Institute of
Technology.
Government
sponsorship
acknowledged.

KISS Quantum, 2012

Motivation

Better Clocks for deployment into space

> Size: < 10 kg</p>

> Power: < 20 W

> Performance: $\Delta f/f < 10^{-16}$

Current Generation of Optical Clocks:

Whispering Gallery Mode Resonators

- Dielectric Sphere, Disc, Torroid,
 Waveguide (10's μm to cm scales)
- Light confined by total internal reflection
- High Q, lifetimes several µseconds

- Evanescent Coupling into Resonator:
 - > Tapered Fiber Waveguide
 - > Prism (angle-polished fibers)

Vahala, CalTech

Gaeta, Lipson, Cornell

JPL

WGMRs Applied

Unique and Useful Properties:

- > Tight mode localization, high power/volume
 - Nonlinear effects:
- Parametric oscillation
 - combs
 - □ harmonic generation, etc.
 - > Ultra-high quality factor, finesse
- Frequency reference, sensing
 - Material Flexibility:
 - Active materials, lasing WGMRs.
 - Crystalline Materials
 - □ Birefringent resonators

WGMR Microcombs

Comb formation from cavity enhanced four-wave mixing, Kerr non-linearity

Advantages:

- CW pump laser
- Compact Size
- Monolithic, Robust

Challenges:

- Dynamics not well-understood
 - > Coherence
- Path to stabilized comb unclear
 - > Octave spanning?
 - > Other stabilization method?

Recent Microcomb Result

- 200 nm width from 52 mW pump
- Single mode resonator
- N=1 comb, first tooth appears at 1 FSR.
 - → Coherent comb expected
- FSR = 172 GHz

Diamond Cutter

Microcomb

Large tooth-spacing good for astronomical spectrometer calibration

[Grudinin et al., Opt. Exp., Vol. 20, pp 6604 (2012)]

WGMR Frequency Reference Cavities

Benefits:

- > High Q facilitates tight locking
- > Wide transparency range
 - Single cavity for many λ's.
- > Solid Structure is Robust
 - Vibrationally insensitive
 - Acoustically insensitive

Ultra Compact

Challenges:

- > Light travels in solid media
 - Thermal sources of instability
 - Material imperfections/drifts

FP Cavity

Thermal Considerations

$$\frac{1}{f} \frac{df}{dT} + \frac{1}{R} \frac{dR}{dT} + \frac{1}{n} \frac{dn}{dT} = 0$$

$$\alpha_{l} \qquad \alpha_{n}$$
Thermal-
expansion refraction

f = resonance freq. R = disc radiusn = refractive index

Fundamental:

$$\left\langle (\Delta T)^2 \right\rangle = \frac{k_b T^2}{C_p V \rho}$$

Dual-mode stabilization

Thermo-refraction

Differential TempCo

$$\frac{d}{dT}\Delta f = \pm \frac{c}{\lambda} \left[\alpha_n^{(\mathcal{O})} - \alpha_n^{(e)} \right] \approx \left\{ -\frac{c}{\lambda} \left[\alpha_n^{(\mathcal{O})} - \alpha_n^{(e)} \right] \right\}$$

79.8 MHz/K (literature values)

89.8 MHz/K (measured value)

 MgF_2

Birefringent crystal

[Strekalov et al., *Opt. Exp.*, Vol. 19, pp 14495, 2011]

Stabilization Scheme

- Single Modulated Laser
- "Carrier" is locked to ordinary mode
- Sideband excites extraordinary mode
 - □ Second error signal for temp lock
- Both loops have fast/slow branches

Temperature Stabilization Result

- Based on error signal residuals
- Locked laser scheme averages down to nK range
- Increased thermal BW from TEC means 2 decades faster averaging than heater alone

10 nK stability at 300 s

~8.7×10⁻¹⁴ optical frequency stability

Optical Frequency is not correspondingly stable

Optical Stability Error Sources

Common-mode Drifts are not Corrected

- Refrective index changes in the:
 - Host material
 - Non-linearities, photo-refraction
 - Interaction with other fields (magnetic, acoustic, e.g.)
 - > Surrounding Gas

- Mechanical deformations from:
 - > Temperature Gradients in disc
 - Strain in mounting structure
 - > Aging

$$10^{-14} = \frac{\Delta f}{f} = \frac{\Delta R}{R}$$

Radial stability ~10⁻¹⁶ m needed!

Conclusions, Future Work

- WGMR microcomb
 - > Achieved desired spectrum from cavity dispersion engineering
 - > Characterize coherence, investigate stabilization methods
- Dual-Mode Temperature stabilization:
 - Achieved High temperature stability of Mode Volume
 - Investigate optical frequency pulling sources

